局部归纳逻辑是现代归纳逻辑理论之一。局部归纳逻辑是相对于整体归纳逻辑而言的,同归纳逻辑的辩护问题直接相关。休谟把对一切或然性归纳推理的辩护归结为对简单枚举法的辩护,他论证了简单枚举法的合理性得不到辩护,因此一切归纳推理都得不到辩护。休谟这里所要求的辩护是一种整体的辩护,即除演绎推理原则以外的任何原则或知识都需要辩护。以整体辩护为目标的归纳逻辑就是整体归纳逻辑。卡尔纳普和赖辛巴赫等人的归纳逻辑均属此类。与此不同,局部归纳逻辑只要求对归纳推理作局部的辩护。以科恩的相关变项法为例,它是以相关变项及其相关程度的知识为前提的,至于这种知识是如何得到的,则超出了归纳逻辑的范围;对于一个成熟的科学共同体来说,有关相关变项的意见往往是一致的,因而无需哲学家们节外生枝地对此提出质疑。