模态逻辑,逻辑的一个分支,它研究必然、可能及其相关概念的逻辑性质。简介模态逻辑,或者叫(不很常见)内涵逻辑,是处理用模态如"可能"、"或许"、"可以"、"一定"、"必然"等限定的句子的逻辑。模态逻辑可以用语义的"内涵性"来描述其特征: 复杂公式的真值不能由子公式的真值来决定的。允许这种决定性的逻辑是"外延性的",经典逻辑就是外延性的例子。模态算子不能使用外延语义来形式化: "乔治·布什是美国总统"和"2 + 2 = 4"是真的,但是"乔治·布什必然是美国总统"是假的,而"2 + 2 = 4 是必然的"是真的。形式模态逻辑使用模态判决算子表示模态。基本的模态算子是 和 。(有时分别使用"L"和"M")。它们的意义依赖于特定的模态逻辑,但它们总是以相互定义的方式来定义。研究必然、可能及其相关概念的逻辑性质。逻辑的一个分支模态逻辑所研究的命题"必然 A"和"可能 A"与通常命题演算中的命题不同。后者是真值函项,前者不是。因为,当A真时,"必然A"既可以是真也可以是假;当A假时,"可能A"既可以是真也可以是假。模态命题演算是现代模态逻辑的基本内容之一。真势模态