弹塑性有限元法是六十年代末由P.V.马卡尔(Marcal)和山田嘉昭导出的弹-塑性矩阵而发展起来的。采用弹一塑性有限元法分析金属成形问题,不仅能按照变形路径得到塑性区的发展状况,工件中的应力、应变分布规律以及几何形状的变化,而且还能有效的处理卸载问题,计算残余应力和应变。但弹一塑性有限元法要以增量方式加载,而每次增量加载的步长又不能太大,这就导致计算工作量大、计算时间长。利用弹塑性有限元法可以清楚的确定出金属在轧制时的弹性变形和塑性变形及没有发生变形的区域。此方法应用于冷轧时可进行更精确的计算,在冷轧中,薄板的变形抗力很大,而且是热轧的后续加工,薄板的厚度薄,使得薄板变形中的弹性变形不能被忽略。根据有限元程序中采用的时间积分算法不同,弹塑性有限元的算法可分为:静力隐式、静力显式、动力显式三种。这三种方法各有优缺点。