理赔次数(claim number),理学-统计学-金融统计-货币统计-政府金融统计,一个保单组合在单位时间内进行保险理赔的次数。在聚合风险模型中,理赔次数和理赔额共同决定了理赔总额,而理赔总额作为一个随机变量,通常可以根据其特性利用泊松分布或负二项分布等分布刻画。①泊松分布常用来描述社会经济活动中各种需要排队服务的管理问题。例如,单位时间内到达某服务设施(如商场、车站、银行、购票处等)的顾客数。对于保险公司而言,客户因发生损失而提出索赔的人数也类似于这种等待服务现象,因此对大多数险种来说,个别保单的理赔次数可用泊松分布来表示,即在单位时间内个别保单发生理赔次数的分布列为:式中参数。容易计算得到,泊松分布的期望、方差和矩母函数分别为:②负二项分布的分布列为:负二项分布的矩母函数等于:根据矩母函数的性质,容易计算出负二项分布均值和方差为:由于负二项分布取值与非负整数,而且有两个参数和,因此也常被用来描述理赔次数的分布。负二项分布也可以看作泊松分布的一种推广情况。