割点,在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多,就称这个点集为割点集合。如果某个割点集合只含有一个顶点X(也即{X}是一个割点集合),那么X称为一个割点。在无向联通图 G=(V,E)中: 若对于x∈V, 从图中删去节点x以及所有与x关联的边之后, G分裂成两个或两个以上不相连的子图, 则称x为G的割点。 简而言之, 割点是无向联通图中的一个特殊的点, 删去中这个点后, 此图不再联通, 而所以满足这个条件的点所构成的集合即为割点集合。