希尔伯特的《几何基础》把几何学引进了一个更抽象的公理化系统,把几何重新定义,不但把传统的欧几里得的《几何原本》改良,更把几何学从一种具体的特定模型上升为抽象的普遍理论。他把几何进一步公理化,首先他叙述一些不加定义基本概念,设想有三组不同的东西,分别叫点、直线和平面,统称为「几何元素」,而它们之间的关系须满足一定的公理要求,则称这些几何元素的集合为「几何空间」。这样,不同的几何便是满足不同公理要求的几何元素的集合,亦因此把几何里那些与感性的感觉有关的东西去掉,只保留抽象的逻辑骨架,不但不会丧失现实的基础,反而扩大了几何命题的范围。欧几里得的《几何原本》为几何学奠下了基础,但随著数学不断的发展,数学家对《几何原本》再严谨审视下,便发现当中不完备之处,例如:「点是没有部分的」中,什么叫「部分」?「直线是它上面的点一样的平放着的线」中,什么叫「平放」?当然还有最受争议的第五公设(平行公设)。这些问题困扰着数学家多年,他们希望可将《几何原本》的定义、公设和公理加以改善,但因为几何学有坚实的基础,且有不少互相关联的分支,如:双曲几何、球面几何、射影几何等等,更使数学家不可只关心个别的公理或定义,而