数值计算 指有效使用数字计算机求数学问题近似解的方法与过程,以及由相关理论构成的学科。数值计算主要研究如何利用计算机更好的解决各种数学问题,包括连续系统离散化和离散形方程的求解,并考虑误差、收敛性和稳定性等问题。从数学类型分,数值运算的研究领域包括数值逼近、数值微分和数值积分、数值代数、最优化方法、常微分方程数值解法、积分方程数值解法、偏微分方程数值解法、计算几何、计算概率统计等。随着计算机的广泛应用和发展,许多计算领域的问题,如计算物理、计算力学、计算化学、计算经济学等都可归结为数值计算问题。1. 数值计算的结果是离散的,并且一定有误差,这是数值计算方法区别与解析法的主要特征。