主析取范式是大学数学里一门名叫离散数学(Discrete mathematics)的课程中的内容,在离散数学的数理逻辑一节中,利用真值表和等值演算法可以化简或推证一些命题,但是当命题的变元的数目较多时,上述方法都显得不方便,所以需要给出把命题公式规范的方法,即把命题公式化成主合取范式和主析取范式的方法。析取范式(DNF)是逻辑公式的标准化(或规范化),它是合取子句的析取。作为规范形式,它在自动定理证明中有用。一个逻辑公式被认为是 DNF 的,当且仅当它是一个或多个文字的一个或多个合取的析取。同合取范式(CNF)一样,在 DNF 中的命题算子是与、或和非。非算子只能用做文字的一部分,这意味着它只能领先于命题变量。