方差齐性检验(Homogeneity of variance test)是数理统计学中检查不同样本的总体方差是否相同的一种方法。其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。简介方差分析中有三条前提假设,其中一条是:不同水平的总体方差相等。因为F检验对方差齐性的偏离较为敏感,故方差齐性检验十分必要。在线性回归分析中,也要满足以上三条前提假设,除了方差齐性检验外,另二个是:因变量是否符合正态分布和是否待分析的因变量中的个案彼此独立也就是个案间不存在自相关并来自于同一个总体。对于线性回归分析,只是多一个需要因变量和自变量有线性趋势。spss中的方差齐性检验:首先需要知道方差齐性检验的本质:样本以及总体的方差的分布是常数,和自变量或者因变量没有关系。方法:绘制散点图:一般情况因变量是纵轴,但是,在方差齐性检验中,因变量被设置为横轴,纵轴是学生化残差。原因就是,要弄清究竟因变量和残差之间有没有关系。结果:如果残差随机分布在一条穿过零点的水平直线的两侧,就说明残差独立,也就是证明因变量方差齐性。注意:学生化残差的定义:方差除以它的