多体系统动力学是研究多体系统(一般由若干个柔性和刚性物体相互连接所组成)运动规律的科学。多体系统动力学包括多刚体系统动力学和多柔体系统动力学。虽然经典力学方法原则上可用于建立任意系统的微分方程,但随着系统内分体数和自由度的增多,以及分体之间约束方式的复杂化,方程的推导过程变得极其繁琐。为适应现代计算技术的飞速发展,要求将传统的经典力学方法针对多体系统的特点加以发展和补充,从而形成多体系统动力学的新分支。为建立多体系统动力学的数学模型,已经发展了各种方法,其共同特点是将经典力学原理与现代计算技术结合。这些方法可归纳为两类,即相对坐标方法和绝对坐标方法。20世纪60年代,古典的刚体力学、分析力学与计算机相结合的力学分支——多体系统动力学在社会生产实际需要的推动下产生了。