黎曼–罗赫定理(Riemann–Roch theorem)是数学中,特别是复分析和代数几何,一个重要工具,它可计算具有指定零点与极点的亚纯函数空间的维数。它将具有纯拓扑亏格 g 的连通紧黎曼曲面上的复分析以某种方式可转换为纯代数设置。此定理最初是黎曼不等式,对黎曼曲面的确定形式由黎曼早逝的学生古斯塔·罗赫于1850年代证明。随后推广到代数曲面,高维代数簇,等等。我们从一个亏格g的连通紧黎曼曲面开始,在上面取定一点P。我们想知道极点只在P的函数。这是向量空间的一个递增序列:没有极点的函数(即常值函数),在P有单极点,在P点最多有两个极点,三个极点……这些空间都是有限维的。