简介非结合代数,non-associative algebra,一般环论中的一个分支,与结合代数在方法和内容上都有非常密切的联系。定义从结合代数的定义中把乘法适合结合律这一条件删去,就是非结合代数的定义。李代数、若尔当代数、交错代数,以及李型代数、若尔当型代数都是非结合代数最重要的类型。非交换若尔当代数、右交错代数、交错李代数、马尔采夫代数、幂结合代数则是李代数、交错代数或若尔当代数的推广。非结合代数中的乘法往往满足某些恒等式。类型 李代数 李代数是一种非结合代数,其乘法满足恒等式:x2=0和(xy)z+(yz)x+(zx)y=0。在一个域F(特征非2)上结合代数〈A,+,·〉中,将原来的有结合律的乘法·换成新引入的乘法×:(1)得到的〈A,+,×〉就是一个李代数。由结合代数A如此得来的李代数,记作A_。 若尔当代数 若尔当代数是20世纪30年代P.若尔当、J.冯·诺伊曼和E.威格纳等人,在研究量子力学的基础时引用的一种非结合代数。在描述量子力学基础时涉及结合代数〈A,+,·〉(希尔伯特空间的算子代