费希尔信息(Fisher Information)(有时简称为信息)是一种测量可观察随机变量X携带的关于模型X的分布的未知参数θ的信息量的方法。形式上,它是方差得分,或观察到的信息的预期值。在贝叶斯统计中,后验模式的渐近分布取决于Fisher信息,而不依赖于先验(根据Bernstein-von Mises定理,Laplace为指数族预测)。统计学家Ronald Fisher强调了Fisher信息在最大似然估计渐近理论中的作用(遵循Francis Ysidro Edgeworth的一些初步结果)。 Fisher信息也用于Jeffreys先验的计算,用于贝叶斯统计。Fisher信息矩阵用于计算与最大似然估计相关联的协方差矩阵。它也可以用于测试统计的制定,例如Wald测试。其中,为品质函数,其均值为零。品质函数的方差称为费希尔信息,用表示,定义为: