线性系统代数理论是以状态空间法为主要工具研究多变量线性系统的理论。20世纪50年代以后,随着航天等技术发展和控制理论应用范围的扩大,经典线性控制理论的局限性日趋明显,它既不能满足实际需要,也不能解决理论本身提出的一些问题,这就推动了线性系统的研究,于是在1960年以后从经典阶段发展到现阶段。美国学者R.E.卡尔曼首先把状态空间法应用于多变量线性系统的研究,提出了能控性和能观测性两个基本概念。20世纪60年代以后,现代线性系统理论又有了新发展,出现了线性系统几何理论、线性系统代数理论和多变量频域方法等研究多变量系统的新理论和新方法。随着计算机技术的发展,以线性系统为对象的计算方法和计算辅助设计问题也受到普遍的重视。与经典线性控制理论相比,现代线性系统主要特点是:研究对象一般是多变量线性系统,而经典线性理论则以单输入单输出系统为对象;除输入和输出变量外,还描述系统内部状态的变量;在分析和综合方面以时域方法为主而经典理论主要采用频域方法;使用更多数据工具。线性系统理论中用抽象代数的语言和方法研究线性系统的一个理论分支。这种理论和方法的特点是抽象化、形式化和符号化。