在数学建模领域,径向基函数网络(Radial basis function network,缩写 RBF network)是一种使用径向基函数作为激活函数的人工神经网络。径向基函数网络的输出是输入的径向基函数和神经元参数的线性组合,广义回归神经网是基于径向基函数网络一种改进。广义回归神经网络也可以可以通过径向基神经元和线性神经元来设计。在机器学习和认知科学领域,人工神经网络(英文:artificial neural network,缩写ANN),简称神经网络(英文:neural network,缩写NN)或类神经网络,是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。广义回归神经网络是建立在数理统计基础上的径向基函数网络,其理论基础是非线性回归分析。GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好,网络还可以处理不稳定数据。一般可以通过径向基神经元和线性神经元可以建立广义回归神经网络。