杨-米尔斯方程(Yang-Mills equation)是一个重要的微分方程,指杨-米尔斯作用量所确定的欧拉-拉格朗日方程。杨-米尔斯理论是基于SU(N)组的一种量规理论,或者更普遍地说,是一个紧致半单李群。杨振宁-米尔斯理论旨在描述基本粒子的行为使用这些非阿贝尔李群和统一的核心的电磁和弱力(即U(1)×SU(2))以及量子色动力学理论的强力(基于SU(3))。从而形成了我们对粒子物理标准模型理解的基础。在一份私人信件中,沃尔夫冈·泡利在1953年提出了爱因斯坦的广义相对论的六维理论,将Kaluza、Klein、Fock等五维理论扩展到高维的内部空间。然而,没有证据表明泡利发展了一个量子场的拉格朗日或它的量子化。因为泡利发现他的理论“导致了一些非物质的阴影粒子”,他没有正式公布结果。虽然沃尔夫冈·泡利没有发表他的六维理论,但他在苏黎世发表了两份关于它的演讲。最近的研究表明,扩展的kaluza - klein理论一般不等同于杨斯-米尔斯理论,因为前者包含了额外的术语。