多复变函数论简称多复变。它是研究多个独立复变数的全纯函数性质的学科。就工具而言,由于多复变函数论中问题的复杂性,所以涉及拓扑、微分方程、微分几何、代数几何、抽象代数、李群和泛函分析,以及实变函数论和复变函数论的大量概念和方法,且有自己独特的处理办法。多复变函数论简称多复变。它是研究多个独立复变数的全纯函数性质的学科,单复变函数论是研究复平面及黎曼曲面中的域上的解析函数的性质,多复变函数论则是研究n(n≥2)个独立复变量z=(z1,z2,...,zn)的全纯函数的性质。为此,首先要将复平面推广到复欧氏空间,将黎曼曲面推广到复流形及复空间,然后研究它们的域上的全纯函数的性质。