双有理映射,有理映射是代数簇上的有理函数概念的推广。但是,它并不是集合意义下的映射。代数簇是代数几何的基本研究对象。设k是一个域,域k上的代数簇就是一个整的、分离、有限型k概形。这里的基域k往往被取作代数闭域。有理函数是指由有理式表示的函数,即两个多项式函数的商(分母不是零多项式)。双有理映射(birational mapping)一种特殊的有理映射。它诱导了两个代数簇的有理函数域间的同构。双有理映射(birational mapping)是一种特殊的有理映射。它诱导了两个代数簇的有理函数域间的同构。双有理映射φ:X→Y诱导了X和Y的两个稠密开子簇间的同构,而且反之亦正确。这样的两个代数簇被称为是双有理等价的或双有理同构的。利用双有理等价关系对代数簇进行分类是代数几何的根本问题之一。双有理映射的最简单的例子是具有非异中心的爆发(或称独异变换)。对于维数≤2的光滑完备簇,双有理映射一定可分解为上述的爆发或其逆映射的复合映射。