所谓数据聚类是指根据数据的内在性质将数据分成一些聚合类,每一聚合类中的元素尽可能具有相同的特性,不同聚合类之间的特性差别尽可能大。聚类分析的目的是分析数据是否属于各个独立的分组,使一组中的成员彼此相似,而与其他组中的成员不同。它对一个数据对象的集合进行分析,但与分类分析不同的是,所划分的类是未知的,因此,聚类分析也称为无指导或无监督的(Unsupervised)学习。聚类分析的一般方法是将数据对象分组为多个类或簇(Cluster),在同一簇中的对象之间具有较高的相似度,而不同簇中的对象差异较大。由于聚类分析的上述特征,在许多应用中,对数据集进行了聚类分析后,可将一个簇中的各数据对象作为一个整体对待。数据聚类 (Cluster analysis) 是对于静态数据分析的一门技术,在许多领域受到广泛应用,包括机器学习,数据挖掘,模式识别,图像分析以及生物信息。随着信息技术的高速发展 , 数据库应用的规模、范围和深度的不断扩大, 导致积累了大量的数据, 而这些激增的数据后面隐藏着许多重要的信息 ,因此人们希望能够对其进行更高层次的分析, 以便更好地利用这些数据 。