良基关系(well-founded relation)是一种特殊的二元关系,是良序关系中抽去全序的成分后获得的一种二元关系。设R为集合(或类)U上的一个二元关系,若U的每个非空子集均有R极小元,则称R为U上的一个良基关系,亦即R为U上的良基关系,当且仅当对U的每个非空子集x,存在x的元素y,使得对任何z∈U,〈z,y〉均不属于R。若U为集合,则称〈U,R〉为良基结构;若A为真类,通常要求U的每个元素关于R的初始段必须为一集合。良序关系一定为良基关系,反之则不成立。例如,在ZF公理系统中,由正则公理知,∈关系为集合论全域V上的良基关系,但不是良序关系。从直观上讲,被良基化的集合或类,可以通过其上的良基关系对其元素进行分层。事实上,若R为U上的一个良基关系,则可利用良基关系上的超穷递归原理定义U中每个元素x关于R的秩rank(x,U,R)=sup{rank(y,U,R)+1:yRx∧y∈U}。如果U可传,R=∈,则rank(x,U,∈)恰好为x的秩rank(x)。良基关系是集合上的一种重要关系,它是策梅洛(E.F.F.Zermelo)于1935年提出的。