克里金法(Kriging)是依据协方差函数对随机过程/随机场进行空间建模和预测(插值)的回归算法。在特定的随机过程,例如固有平稳过程中,克里金法能够给出最优线性无偏估计(Best Linear Unbiased Prediction, BLUP),因此在地统计学中也被称为空间最优无偏估计器(spatial BLUP)。对克里金法的研究可以追溯至二十世纪60年代,其算法原型被称为普通克里金(Ordinary Kriging, OK),常见的改进算法包括泛克里金(Universal Kriging, UK)、协同克里金(Co-Kriging, CK)和析取克里金(Disjunctive Kriging, DK);克里金法能够与其它模型组成混合算法。若协方差函数的形式等价,且建模对象是平稳高斯过程,普通克里金的输出与高斯过程回归(Gaussian Process Regression, GPR)在正态似然下输出的均值和置信区间相同,有稳定的预测效果。克里金法是典型的地统计学算法,被应用于地理科学、环境科学、大气科学等领域。