素数分布是数论中研究素数性质的重要课题。素数或称质数,是指一个大于1的整数,除1和它本身外,不能被其他的正整数所整除。研究各种各样的素数分布状况,一直是数论中最重要和最有吸引力的中心问题之一。大约在公元前300年,欧几里得就证明了素数有无穷多个。设2,3,,p是不大于p的所有素数,q=2*3**p+1。容易看出q不是2,3,,p的倍数。由于q的最小正除数一定是素数,因此,或者q本身是一个素数,或者q可被p与q之间的某两个素数所整除[比如:2*3*5*7*11*13+1=30031=59*509]。所以必有大于p的素数存在,由此即知素数有无穷多个。