抛物几何从属于欧氏几何。几何学的一门分科。公元前3世纪,古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理,在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。在其公理体系中,最重要的是平行公理,由于对这一公理的不同认识,导致非欧几何的产生。按所讨论的图形在平面上或空间中,分别称为“平面几何”与“立体几何”。欧几里德几何指按照欧几里德的《几何原本》构造的几何学。欧几里德几何有时就指平面上的几何,即平面几何。三维空间的欧几里德几何通常叫做立体几何。 高维的情形请参看欧几里德空间。数学上,欧几里德几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。公理描述 欧几里德几何的传统描述是一个公理系统,通过有限的公理来证明所有的“真命题”。欧几里德几何的五条公理是:任意两个点可以通过一条直线连接。任意线段能无限延伸成一条直线。给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。所有直角都全等。若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。