多重分形(multifractal)一种分为多个区域的复杂分形结构。为了对分形的复杂性和不均匀性进行更细致地刻画,需引进它的概率分布函数及其各阶矩的计算,由此构成了分形维数的一个连续谱,称之为多重分形或多标度分形。由于多重分形至今尚无严格的数学定义,以下仅通过实例进行简单的描述.设有一个分布不均匀的分形,首先将它分成若干个小区域,定义第i区域内的密度分布函数为尸,假定尸,存在着标度关系,即其中e是一个小的测量单位,a是一个标度指数,称为奇异指数,它是反映分形体内各个小区间的奇异程度的一个量,所以a的数值与其所在的位置有关.进一步将分形上具有相同a值的小区间数记为f (a)被称为奇异谱,因为它将奇异值a的密度用一个连续函数来表示.另一方面,还可将分布函数进行加权求和,得到r(y)常称为质量指数.再定义加权后的广义分形维数D。为从上述公式中可知,当9=。时,D。就是普通的分形维数,而D,称为信息维数,D:称为关联维数.因此,几,被称为广义分形维数.经过简单的计算可得a, 六a)和:<q) }D、这两组参量之间的对应关系式为这一系列公式给出了多重分形理论的基本核心.利用多