1874年格奥尔格·康托尔猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。它又被称为希尔伯特第一问题,在1900年第二届国际数学家大会上,大卫·希尔伯特把康托尔的连续统假设列入20世纪有待解决的23个重要数学问题之首。1938年哥德尔证明了连续统假设和世界公认的ZFC公理系统不矛盾。1963年美国数学家科亨证明连续假设和ZFC公理系统是彼此独立的。因此,连续统假设不能在ZFC公理系统内证明其正确性与否。概念连续统假设(continuum hypothesis),数学上关于连续统势的假设。常记作CH。该假设是说,无穷集合中,除了整数集的基数,实数集的基数是最小的。问题的提出通常称实数集即直线上点的集合为连续统,而把连续统的势(大小)记作C1。2000多年来,人们一直认为任意两个无穷集都一样大。直到1891年,G.康托尔证明:任何一个集合的幂集(即它的一切子集构成的集合)的势都大于这个集合的势,人们才认识到无穷集合也可以比较大小。自然数集是最小的无穷集合,自然数集的势记作阿列夫零。康托尔证明连续统势等于自然数集的幂集的势。是否存在一个