四维矢量,是在狭义相对论里,四维矢量 (four-vector) 是实值四维矢量空间里的矢量。这四维矢量空间称为闵可夫斯基时空。四维矢量的分量分别为时间与三维位置。在闵可夫斯基时空内的任何一点,都代表一个事件,可以用四维矢量表示。应用洛伦兹变换,而不是伽利略变换 ,我们可以使对于某惯性参考系的四维矢量,经过平移,旋转,或递升(相对速度为常数的洛伦兹变换),变换到对于另一个惯性参考系的四维矢量。所有这些平移,旋转,或递升的集合形成了庞加莱群( Poincaré group)。所有的旋转,或递升的集合则形成了洛伦兹群(Lorentz group)。四维位移定义为两个事件之间的矢量差。在时空图里,四维位移可以用一只从第一个事件指到第二个事件的箭矢来表示。当矢量的尾部是坐标系的原点时,位移就是位置。关于四维矢量的理论,通常提到的是位移。