在n个数码1,2,…,n的全排列j1j2…jn中,若一个较大的数码排在一个较小的数码的前面,则称它们构成反序,亦称逆序,这个排列的所有反序的总和,称为这个排列的反序数,记为τ(j1 j2…jn)或π(j1j2…jn)。例如,在四个数码的排列3142中,3与1,3与2以及4与2都构成反序,因此τ(3142)=3。反序数为奇数的排列称为奇排列,反序数为偶数的排列称为偶排列。在n (n>1)个数码的全体n!个排列中,奇、偶排列的个数相等,即都为n!/2个,这决定了在n阶行列式的展开式的n!项中正负项各半。排列 把n个不同的元素按一定的顺序排成一行( ),称为这n个元素的一个排列,为了方便起见,这里只用到前n个自然数 的排列。