航天动力学的一个分支,研究航天器的姿态运动,包括航天器整体围绕其质心的运动以及航天器各部分之间的相对运动。航天器的结构设计和姿态控制系统的设计都以姿态动力学研究为基础。主要研究内容包括航天器姿态运动的动力学特性,包括姿态动力学方程和运动学方程;航天器姿态稳定化和控制。航天器姿态动力学是从天体力学关于地球自转轴运动的岁差和章动理论以及月球绕其质心运动的天平动理论发展起来的。早期的航天器结构比较简单,在动力学研究中把它当作刚体处理。但是美国“探险者”1 号卫星在飞行中出现了事先没有预计到的翻滚运动。后来的分析结果表明,问题出在卫星内活动部件的运动。只要放弃理想刚体的假设,代之以准刚体,即内部有能量耗散的近似刚体模型,就能解释所观察到的现象。进一步的研究导出了自旋卫星和双自旋卫星运动稳定性的设计准则。60年代中期对重力梯度稳定卫星可伸展薄壁杆在日光照射下的热弹性振动的研究,以及对带挠性天线的自旋卫星稳定性分析表明:挠性振动不仅是姿态控制的干扰,而且是受控对象特性的一部分。70年代初出现的混合坐标法在这方面为控制系统设计和结构设计提供了便利的工具。多刚体系统和刚体液体混合系统动力学也受到重视。