在假设检验中,零假设(Null Hypothesis)是统计检测时的一类假设。零假设的内容一般是希望证明其错误的假设。与零假设相对立的就是操作性对立假设又称为备择假设(Alternative Hypothesis)即不希望看到的另一种可能。从数学上来看,零假设和备择假设的地位是相等的,但是在统计学的实际运用中,常常需要强调一类假设为应当或期望实现的假设。如果一个统计检验的结果拒绝零假设(结论不支持零假设),而实际上真实的情况属于零假设,那么称这个检验犯了第一类错误。反之,如果检验结果支持零假设,而实际上真实的情况属于备择假设,那么称这个检验犯了第二类错误。通常的做法是,在保持第一类错误出现的机会在某个特定水平上的时候,尽量减少第二类错误出现的概率。