吉布斯现象
(数学术语)
吉布斯现象(又叫吉布斯效应):将具有不连续点的周期函数(如矩形脉冲)进行傅立叶级数展开后,选取有限项进行合成。当选取的项数越多,在所合成的波形中出现的峰起越靠近原信号的不连续点。当选取的项数很大时,该峰起值趋于一个常数,大约等于总跳变值的9%。吉布斯现象(又叫吉布斯效应):将具有不连续点的周期函数(如矩形脉冲)进行傅立叶级数展开后,选取有限项进行合成。当选取的项数越多,在所合成的波形中出现的峰起越靠近原信号的不连续点。当选取的项数很大时,该峰起值趋于一个常数,大约等于总跳变值的9%。
用户数据
参数表
继承树
构成树
关注人数:
0
技点进度:
0
/
0
题库进度:
0
/
0
技能进度:
0
/
关注级别:
取消关注
【参数模块正在开发当中】