射影代数簇,Pn(C)的一个子集,若它可以表示为定义在Cn+1中一组齐次多项式公共零点的集合,则称它为射影代数簇,简称代数簇,也可称它为Pn(C)的代数子集。代数簇(algebraic variety)是代数几何的基本研究对象。设k是一个域,域k上的代数簇就是一个整的、分离、有限型k概形,这里的基域k往往被取作代数闭域。若一个代数簇又是射影、拟射影、仿射或正常k概形,则把这个代数簇相应地称为射影、拟射影、仿射、完备(代数)簇。射影簇必定是完备簇,反之则不然。永田定理断言:对任意的代数簇X,必存在一个完备簇,使得是开浸入。代数簇的概念最早是在20世纪20年代由范·德·瓦尔登(Van der Waerden,B.L.)和诺特(Noether,E.)等提出的,以后又经过韦伊(Weil,A.)、塞尔(Serre,J.P.)等人的发展,直至格罗腾迪克(Grothendieck,A.)把它纳入概形体系,才得到上述的现代定义。