斯图姆定理(Sturm theorem)是确定实系数多项式实根个数的一个重要定理,设f(x)是实系数n(n≥1)次多项式,令f0(x)=f(x),f1(x)=f′(x),则由带余除法,f0(x)=f1(x)q1(x)+r1(x).令f2(x)=-r1(x),对f1(x)与f2(x),由带余除法有f1(x)=f2(x)q2(x)+r2(x),再令f3(x)=-r2(x),并对f2(x)与f3(x)作带余除法,如此继续下去,得多项式序列:f0(x),f1(x),…,fs(x),…,fm(x),称为f(x)的斯图姆序列,斯图姆定理是:设f(x)是实系数多项式,且f(x)无重根,f0(x),f1(x),…,fm(x)是f(x)的斯图姆序列,若a<b,f(a)≠0和f(b)≠0,则序列f0(a),f1(a),…,fm(a)的变号数V(a)与序列f0(b),f1(b),…,fm(b)的变号数V(b)的差V(a)-V(b)恰是f(x)在区间(a,b)内实根的个数,斯图姆(C.-F.Sturm)在1829年的论文《论数字方程解》中,深入地讨论了代数方程根的隔离,引入了斯图姆序列的概念,给出了斯图姆定理