近邻法分类
(数学术语)
近邻法分类,对被识别样本某个给定近邻域中的已知类别的学习样本数量进行统计,并以其中数量最多的那一类作为分类结果的分类方法。对 k个被识别样本的近邻学习样本进行计算时,假设离被识别样本最近的5个学习样本中有3个属于某类,就把被识别样本判别为该类。当k等于1时,就是通常所说的最近邻规则,即被识别样本离哪一类的学习样本最近,就把它分到哪一类(见最小距离分类)。设R1,R2…,R0分别是已知类别的c个学习样本集合,每个集合Rj中有uj个特征向量,用x忋表示,k=1,2,…,uj。
用户数据
参数表
继承树
构成树
关注人数:
0
技点进度:
0
/
0
题库进度:
0
/
0
技能进度:
0
/
关注级别:
取消关注
【参数模块正在开发当中】