祖暅原理也称祖氏原理,一个涉及几何求积的著名命题。公元656年,唐代李淳风注《九章算术》时提到祖暅的开立圆术。祖暅在求球体积时,使用一个原理:“幂势既同,则积不容异”。“幂”是截面积,“势”是立体的高。意思是两个同高的立体,如在等高处的截面积相等,则体积相等。更详细点说就是,界于两个平行平面之间的两个立体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个立体的体积相等。上述原理在中国被称为祖暅原理,国外则一般称之为卡瓦列利原理。祖暅原理,又名等幂等积定理,内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等。祖暅之《缀术》有云:“缘幂势既同,则积不容异”。