差分隐私
(密码学术语)
差分隐私(英语:differential privacy)是密码学中的一种手段,旨在提供一种当从统计数据库查询时,最大化数据查询的准确性,同时最大限度减少识别其记录的机会。假设 是一个正实数,A是一个随机算法,它将数据集作为输入(表示信任方拥有的数据)。imA表示A的映射。对于在非单个元素(即,一个人的数据)的所有数据集D1和D2以及imA的所有子集S,算法A是 -差分隐私,其中概率取决于算法的随机性。
用户数据
参数表
继承树
构成树
关注人数:
0
技点进度:
0
/
0
题库进度:
0
/
0
技能进度:
0
/
关注级别:
取消关注
【参数模块正在开发当中】