永田环
(交换代数名词)
永田环,凡拟优环皆为永田环,所以代数几何中处理的环几乎都是永田环。是诺特整环而非永田环的例子首先由秋月康夫于1935年给出。设R是一个诺特环,如果对 R 的任意素理想p ,整环 R/p 具有性质:对 R/p 的商域的任意有限扩域 K ,R/p 在 K 中的整闭包都是有限生成的 R/p 模,则称 R是永田环。当 R 是永田环时,R 的局部化环和有限 R 代数也是永田环。
用户数据
参数表
继承树
构成树
关注人数:
0
技点进度:
0
/
0
题库进度:
0
/
0
技能进度:
0
/
关注级别:
取消关注
【参数模块正在开发当中】