非监督学习
(自动化)
在机器学习,无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构。因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案。这区别于监督学习和强化学习无监督学习。
用户数据
参数表
继承树
构成树
关注人数:
0
技点进度:
0
/
0
题库进度:
0
/
0
技能进度:
0
/
关注级别:
取消关注
【参数模块正在开发当中】