椭圆几何即黎曼几何。 黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 ,空间中的点可用n个实数(x1,…,x??)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限邻近两点(x1,…x??)与(x1+dx1,…,x??+dx??)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。维罗巴切夫斯基几何出现以后,1854 年,黎曼(G.F.B.Riemann)以“过直线外一点,没有直线与已知直线共面而不相交”为公理去代替欧几里得平行公理,创立了另一种非欧几何,人们称之为黎曼几何(Riemannian geometry )。简称为黎氏几何,亦称椭圆几何(elliptic geometry)。在这种几何里,三角形内角之和大于两直角。非欧几何与欧