玻璃应力仪是用来检测玻璃退火后的应力情况,以便更好的分析玻璃样品的质量状况。也更好的监控生产工艺。弹性力学中的一类问题,应力在固体局部区域内显著增高的现象。多出现于尖角、孔洞、缺口、沟槽以及有刚性约束处及其邻域。应力集中会引起脆性材料断裂;使物体产生疲劳裂纹。在应力集中区域,应力的最大值(峰值应力)与物体的几何形状和加载方式等因素有关。局部增高的应力值随与峰值应力点的间距的增加而迅速衰减。由于峰值基本内容 弹性力学中的一类问题,应力在固体局部区域内显著增高的现象。多出现于尖角、孔洞、缺口、沟槽以及有刚性约束处及其邻域。应力集中会引起脆性材料断裂;使物体产生疲劳裂纹。在应力集中区域,应力的大值(峰值应力)与物体的几何形状和加载方式等因素有关。局部增高的应力值随与峰值应力点的间距的增加而迅速衰减。由于峰值应力往往超过屈服极限(见材料力学性能)而造成应力的重新分配,所以,实际的峰值应力常低于按弹性力学计算出的理论峰值应力。反映局部应力增高程度的参数称为应力集中系数k,它是峰值应力与不考虑应力集中时的应力的比值,恒大于1且与载荷大小无关。在无限大平板的单向拉伸情况下,其中圆孔边缘的k=3;在弯曲情况下,对于不同的圆孔半径与板厚比值,k=1.8~3.0;在扭转情况下,k=1.6~4.0。1898年德国的 G.基尔施首先得出圆孔附近应力集中的结果 。1910年俄国的G.V.科洛索夫求出椭圆孔附近应力集中的公式。20世纪20年代末 ,苏联的N.I.穆斯赫利什维利等人把复变函数引入弹性力学,用保角变换把一个不规则分段光滑的曲线变换到单位圆上,导出复变函数的应力表达式及其边界条件,进而获得一批应力集中的解。各种实验手段的发展也很快,如电测法、光弹性法、散斑干涉法、云纹法等实验手段(见实验应力分析)均可测出物体的应力集中。近年来计算机和有限元法以及边界元法的迅速发展,为寻找应力集中的数值解开辟