北京中科软培科技有限公司举办《2018机器学习与深度学习案例实践班》

2018年8月8日 8:00 至 2018年8月12日 18:00 ,北京中科软培科技有限公司在 杭州·万商国际酒店·举办《2018机器学习与深度学习案例实践班》,会议大约有50人参加。

会议通知


2018机器学习与深度学习案例实践班

2018机器学习与深度学习案例实践班宣传图

关于“机器学习与深度学习案例实践班”通知

各有关单位:

为进一步推动高等院校机器学习与深度学习教学工作的开展,加强国内各高等院校同行间的交流,培养国内的师资力量,将机器学习与深度学习的最新实训内容带入课堂,特举办“机器学习与深度学习案例实践班”,具体由北京中科软培科技有限公司举办网址,本次培训由权威师资主讲,培训主打理论结合实践主题,课程强调动手操作;内容以代码落地为主,以理论讲解为根,以公式推导为辅。

一、培训目的:

通过课程学习,可以理解机器学习的思维方式和关键技术;了解深度学习和机器学习在当前工业界的落地应用;能够根据数据分布选择合适的算法模型并书写代码,初步胜任使用Python进行数据挖掘、机器学习、深度学习等工作。

二、时间地点:

2018年8月8日-12日   7日报到    杭州

三、培训对象:各高等院校数据科学相关专业、计算机科学技术、网络工程、软件工程、信息工程、信息管理、、统计学专业、应用数学专业、经济管理专业、市场营销专业等科研、教学带头人,骨干教师、博士生、硕士生;各高校教务处、科研处、信息中心、实验中心领导。对机器学习技术有兴趣和需求,愿意进行深入钻研的从业人员。                                                                                                   

四、颁发证书:

参加相关培训并通过考试的学员,可以获得:

工业和信息化部全国网络与信息技术考试管理中心中心颁发的-深度学习技能证书。该证书可作为专业技术人员职业能力考核的证明,以及专业技术人员岗位聘用、任职、定级和晋升职务的重要依据。

注:请学员带二寸彩照2张(背面注明姓名)、身份证复印件一张。

北京中科软培科技有限公司

中科软培主要从事IT方向的前沿技术培训,本着为用户创造真正价值,围绕以用户为中心的价值观不断探索,在机器学习,深度学习,大数据、R语言、虚拟现实、增强现实等领域形成了完善的课程体系。学以致用,全部课程均已实战为主,采用理论与实战相结合的方式,实用的课程设计、精心施教的专家团队、严格的教学把关、细心周到的后期咨询,赢得众多客户的好评。

会议日程 (最终日程以会议现场为准)





 

 

 

 

 

 

 

 

Python与TensorFlow


解释器Python2.7/3.6与IDE:Anaconda/Pycharm

列表/元组/字典/类/文件

numpy/scipy/matplotlib/panda的介绍和典型使用

scikit-learn的介绍和典型使用

TensorFlow典型应用

典型图像处理

多种数学曲线

多项式拟合

快速傅里叶变换FFT

奇异值分解SVD

Soble/Prewitt/Laplacian算子与卷积网络

 

 

 

 

代码和案例实践:

卷积与(指数)移动平均线

股票数据分析

缺失数据的处理

环境数据异常检测和分析






 

 

 

 

 

 

 

 

 

回归分析






线性回归

Logistic/Softmax回归

广义线性回归

L1/L2正则化

Ridge与LASSO

Elastic Net

梯度下降算法:BGD与SGD

特征选择与过拟合

Softmax回归的概念源头

最大熵模型

K-L散度


代码和案例实践:

1.股票数据的特征提取和应用

2.泰坦尼克号乘客缺失数据处理和存活率预测

3.环境检测数据异常分析和预测

4.模糊数据查询和数据校正方法

5.PCA与鸢尾花数据分类

6.二手车数据特征选择与算法模型比较

7.广告投入与销售额回归分析

8.鸢尾花数据集的分类

9.TensorFlow实现线性回归

10.TensorFlow实现Logistic回归

10.TensorFlow实现Logistic回归


 

 

 

 

决策树和随机森林


熵、联合熵、条件熵、KL散度、互信息

最大似然估计与最大熵模型

ID3、C4.5、CART详解

决策树的正则化

预剪枝和后剪枝

Bagging

随机森林

不平衡数据集的处理

利用随机森林做特征选择

使用随机森林计算样本相似度

异常值检测

 

 

代码和案例实践:

1.随机森林与特征选择

2.决策树应用于回归

3.多标记的决策树回归

4.决策树和随机森林的可视化

5.葡萄酒数据集的决策树/随机森林分类

6.泰坦尼克乘客存活率估计



 

 

 

SVM



线性可分支持向量机

软间隔

损失函数的理解

核函数的原理和选择

SMO算法

支持向量回归SVR

多分类SVM

代码和案例实践:

1.原始数据和特征提取

2.调用开源库函数完成SVM

4.葡萄酒数据分类

5.数字图像的手写体识别

5.MNIST手写体识别

6.SVR用于时间序列曲线预测

7.SVM、Logistic回归、随机森林三者的横向比较


 

 

 

 

卷积神经网络CNN

神经网络结构,滤波器,卷积

池化,激活函数,反向传播

目标分类与识别、目标检测与追踪

AlexNet、VGGNet、GoogleLeNet

Inception-V3/V4

ResNet、DenseNet

代码和案例实践:

数字图片分类

卷积核与特征提取

以图搜图

人证合一

卷积神经网络调参经验分享


 

 

图像视频的定位与识别

视频关键帧处理

物体检测与定位

RCNN,Fast-RCNN,Faster-RCNN,MaskRCNN

YOLO

FaceNet

代码和案例实践:

迁移学习

人脸检测

OCR字体定位和识别

睿客识云

气象识别



 

 

 

 

循环神经网络RNN


RNN基本原理

LSTM、GRU

Attention

CNN+LSTM模型

Bi-LSTM双向循环神经网络结构

编码器与解码器结构

特征提取:word2vec

Seq2seq模型

 

代码和案例实践:

看图说话

视频理解

藏头诗生成

问答对话系统

OCR

循环神经网络调参经验分享



 

 

 

 

 

 

自然语言处理

语言模型Bi-Gram/Tri-Gram/N-Gram

分词

词性标注

依存句法分析

语义关系抽取

词向量

文本分类

机器翻译

文本摘要

阅读理解

问答系统

情感分析

代码和案例实践:

输入法设计

HMM分词

文本摘要的生成

智能对话系统和SeqSeq模型

阅读理解的实现与Attention



 

 

 

生成对抗网络GAN

生成与判别

生成模型:贝叶斯、HMM到深度生成模型

GAN对抗生成神经网络

DCGAN

Conditional GAN

InfoGan

Wasserstein GAN

代码和案例实践:

图片生成

看图说话

对抗生成神经网络调参经验分享


 

 

 

 

强化学习RL

 

为何使用增强学习

马尔科夫决策过程

贝尔曼方程、最优策略

策略迭代、值迭代

Q Learning

SarsaLamda

DQN

A3C

ELF

代码和案例实践:

OpenAI

飞翔的小鸟游戏

基于增强学习的游戏学习

DQN的实现

会议嘉宾 (最终出席嘉宾以会议现场为准)


主讲专家:

邹博,中国科学院副研究员,天津大学软件学院创业导师,成立中国科学院邹博人工智能研究中心(杭州站),在翔创、天识、睿客邦等公司担任技术顾问,研究方向机器学习、深度学习、计算几何,应用于大型气象设备图像与文本挖掘、股票交易与预测、量子化学医药路径寻

优、传统农资产品价格预测和决策等领域。

参会指南


?RMB:4800元/人(含报名费、证书费、培训费、教材费、资料费)食宿统一安排费用自理。

相关领域
商业