2019年5月29日 8:00 至 2019年6月1日 18:00 ,中国信息化人才培训中心在 深圳举办《2019Python大数据机器学习实战高级工程师实战培训班(5月深圳班)》。
会议内容
主办方介绍
一、课程学习目标
本课程特点是从数学层面推导最经典的机器学习算法,以及每种算法的示例和代码实现(Python)、如何做算法的参数调试、以实际应用案例分析各种算法的选择等。
1.每个算法模块按照“原理讲解→分析数据→自己动手实现→特征与调参”的顺序。
2.“Python数据清洗和特征提取”,提升学习深度、降低学习坡度。
3.增加网络爬虫的原理和编写,从获取数据开始,重视将实践问题转换成实际模型的能力,分享工作中的实际案例或Kaggle案例:广告销量分析、环境数据异常检测和分析、数字图像手写体识别、Titanic乘客存活率预测、用户-电影推荐、真实新闻组数据主题分析、中文分词、股票数据特征分析等。
4.强化矩阵运算、概率论、数理统计的知识运用,掌握机器学习根本。
5.阐述机器学习原理,提供配套源码和数据。
6.以直观解释,增强感性理解。
7.对比不同的特征选择带来的预测效果差异。
8.重视项目实践,重视落地。思考不同算法之间的区别和联系,提高在实际工作中选择算法的能力。
9.涉及和讲解的部分Python库有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn。
二、培训对象
大数据分析应用开发工程师、大数据分析项目的规划咨询管理人员、大数据分析项目的IT项目高管人员、大数据分析与挖掘处理算法应用工程师、大数据分析集群运维工程师、大数据分析项目的售前和售后技术支持服务人员
三、颁发证书
参加相关培训并通过考试的学员,可以获得:
工业和信息化部颁发的-《Python大数据工程师证书》。该证书可作为专业技术人员职业能力考核的证明,以及专业技术人员岗位聘用、任职、定级和晋升职务的重要依据。
注:请学员带一寸彩照2张(背面注明姓名)、身份证复印件一张。
四、培训时间、地点
2019年5月29日-6月1日 深圳
中国信息化人才培训中心
详细培训内容介绍
课程模块 | 课程主题 | 主要内容及案例和演示 | |
模块一 | 机器学习的数学基础1 - 数学分析 | 1. 机器学习的一般方法和横向比较 2. 数学是有用的:以SVD为例 3. 机器学习的角度看数学 4. 复习数学分析 5. 直观解释常数e 6. 导数/梯度 7. 随机梯度下降 8. Taylor展式的落地应用 9. gini系数 10. 凸函数 11. Jensen不等式 12. 组合数与信息熵的关系 | |
模块二 | 机器学习的数学基础2 - 概率论与贝叶斯先验 | 1. 概率论基础 2. 古典概型 3. 贝叶斯公式 4. 先验分布/后验分布/共轭分布 5. 常见概率分布 6. 泊松分布和指数分布的物理意义 7. 协方差(矩阵)和相关系数 8. 独立和不相关 9. 大数定律和中心极限定理的实践意义 10. 深刻理解最大似然估计MLE和最大后验估计MAP 11. 过拟合的数学原理与解决方案 | |
模块三 | 机器学习的数学基础3 - 矩阵和线性代数 | 1. 线性代数在数学科学中的地位 2. 马尔科夫模型 3. 矩阵乘法的直观表达 4. 状态转移矩阵 5. 矩阵和向量组 6. 特征向量的思考和实践计算 7. QR分解 8. 对称阵、正交阵、正定阵 9. 数据白化及其应用 10. 向量对向量求导 11. 标量对向量求导 12. 标量对矩阵求导工作机制 | |
模块四 | Python基础1 - Python及其数学库 | 1. 解释器Python2.7与IDE:Anaconda/Pycharm 2. Python基础:列表/元组/字典/类/文件 3. Taylor展式的代码实现 4. numpy/scipy/matplotlib/panda的介绍和典型使用 5. 多元高斯分布 6. 泊松分布、幂律分布 7. 典型图像处理 8. 蝴蝶效应 9. 分形与可视化 | |
模块五 | Python基础2 - 机器学习库 | 1. scikit-learn的介绍和典型使用 2. 损失函数的绘制 3. 多种数学曲线 4. 多项式拟合 5. 快速傅里叶变换FFT 6. 奇异值分解SVD 7. Soble/Prewitt/Laplacian算子与卷积网络 8. 卷积与(指数)移动平均线 9. 股票数据分析 | |
模块六 | Python基础3 - 数据清洗和特征选择 | 1. 实际生产问题中算法和特征的关系 2. 股票数据的特征提取和应用 3. 一致性检验 4. 缺失数据的处理 5. 环境数据异常检测和分析 6. 模糊数据查询和数据校正方法、算法、应用 7. 朴素贝叶斯用于鸢尾花数据 8. GaussianNB/MultinomialNB/BernoulliNB 9. 朴素贝叶斯用于18000+篇/Sogou新闻文本的分类 | |
模块七 | 回归 | 1. 线性回归 2. Logistic/Softmax回归 3. 广义线性回归 4. L1/L2正则化 5. Ridge与LASSO 6. Elastic Net 7. 梯度下降算法:BGD与SGD 8. 特征选择与过拟合 | |
模块八 | Logistic回归
| 1. Sigmoid函数的直观解释 2. Softmax回归的概念源头 3. Logistic/Softmax回归 4. 最大熵模型 5. K-L散度 6. 损失函数 7. Softmax回归的实现与调参 | |
模块九 | 回归实践 | 1. 机器学习sklearn库介绍 2. 线性回归代码实现和调参 3. Softmax回归代码实现和调参 4. Ridge回归/LASSO/Elastic Net 5. Logistic/Softmax回归 6. 广告投入与销售额回归分析 7. 鸢尾花数据集的分类 8. 交叉验证 9. 数据可视化 | |
模块十 | 决策树和随机森林 | 1. 熵、联合熵、条件熵、KL散度、互信息 2. 最大似然估计与最大熵模型 3. ID3、C4.5、CART详解 4. 决策树的正则化 5. 预剪枝和后剪枝 6. Bagging 7. 随机森林 8. 不平衡数据集的处理 9. 利用随机森林做特征选择 10. 使用随机森林计算样本相似度 11. 数据异常值检测 | |
模块十一 | 随机森林实践 | 1. 随机森林与特征选择 2. 决策树应用于回归 3. 多标记的决策树回归 4. 决策树和随机森林的可视化 5. 葡萄酒数据集的决策树/随机森林分类 6. 波士顿房价预测 | |
模块十二 | 提升 | 1. 提升为什么有效 2. 梯度提升决策树GBDT 3. XGBoost算法详解 4. Adaboost算法 5. 加法模型与指数损失 | |
模块十三 | 提升实践 | 1. Adaboost用于蘑菇数据分类 2. Adaboost与随机森林的比较 3. XGBoost库介绍 4. Taylor展式与学习算法 5. KAGGLE简介 6. 泰坦尼克乘客存活率估计 | |
模块十四 | SVM | 1. 线性可分支持向量机 2. 软间隔的改进 3. 损失函数的理解 4. 核函数的原理和选择 5. SMO算法 6. 支持向量回归SVR | |
模块十五 | SVM实践 | 1. libSVM代码库介绍 2. 原始数据和特征提取 3. 葡萄酒数据分类 4. 数字图像的手写体识别 5. SVR用于时间序列曲线预测 6. SVM、Logistic回归、随机森林三者的横向比较 | |
模块十六 | 聚类(一) | 1. 各种相似度度量及其相互关系 2. Jaccard相似度和准确率、召回率 3. Pearson相关系数与余弦相似度 4. K-means与K-Medoids及变种 5. AP算法(Sci07)/LPA算法及其应用 | |
模块十七 | 聚类(二) | 1. 密度聚类DBSCAN/DensityPeak(Sci14) 2. DensityPeak(Sci14) 3. 谱聚类SC 4. 聚类评价AMI/ARI/Silhouette 5. LPA算法及其应用 | |
模块十八 | 聚类实践 | 1. K-Means++算法原理和实现 2. 向量量化VQ及图像近似 3. 并查集的实践应用 4. 密度聚类的代码实现 5. 谱聚类用于图片分割 | |
模块十九 | EM算法 | 1. 最大似然估计 2. Jensen不等式 3. 朴素理解EM算法 4. 精确推导EM算法 5. EM算法的深入理解 6. 混合高斯分布 7. 主题模型pLSA | |
模块二十 | EM算法实践 | 1. 多元高斯分布的EM实现 2. 分类结果的数据可视化 3. EM与聚类的比较 4. Dirichlet过程EM 5. 三维及等高线等图件的绘制 6. 主题模型pLSA与EM算法 | |
模块二十一 | 主题模型LDA | 1. 贝叶斯学派的模型认识 2. Beta分布与二项分布 3. 共轭先验分布 4. Dirichlet分布 5. Laplace平滑 6. Gibbs采样详解 | |
模块二十二 | LDA实践 | 1. 网络爬虫的原理和代码实现 2. 停止词和高频词 3. 动手自己实现LDA 4. LDA开源包的使用和过程分析 5. Metropolis-Hastings算法 6. MCMC 7. LDA与word2vec的比较 8. TextRank算法与实践 | |
模块二十三 | 隐马尔科夫模型HMM | 1. 概率计算问题 2. 前向/后向算法 3. HMM的参数学习 4. Baum-Welch算法详解 5. Viterbi算法详解 6. 隐马尔科夫模型的应用优劣比较 | |
模块二十四 | HMM实践 | 1. 动手自己实现HMM用于中文分词 2. 多个语言分词开源包的使用和过程分析 3. 文件数据格式UFT-8、Unicode 4. 停止词和标点符号对分词的影响 5. 前向后向算法计算概率溢出的解决方案 6. 发现新词和分词效果分析 7. 高斯混合模型HMM 8. GMM-HMM用于股票数据特征提取 | |
模块二十五 |
| 课堂提问与互动讨论 |
师资介绍
张老师:阿里大数据高级专家,国内资深的Spark、Hadoop技术专家、虚拟化专家,对HDFS、MapReduce、HBase、Hive、Mahout、Storm、spark和openTSDB等Hadoop生态系统中的技术进行了多年的深入的研究,更主要的是这些技术在大量的实际项目中得到广泛的应用,因此在Hadoop开发和运维方面积累了丰富的项目实施经验。近年主要典型的项目有:某电信集团网络优化、中国移动某省移动公司请账单系统和某省移动详单实时查询系统、中国银联大数据数据票据详单平台、某大型银行大数据记录系统、某大型通信运营商全国用户上网记录、某省交通部门违章系统、某区域医疗大数据应用项目、互联网公共数据大云(DAAS)和构建游戏云(Web Game Daas)平台项目等。
会议门票
培训费用及须知
7800元/人(含教材、培训费、考证费以及学习用具等费用) 食宿统一安排,费用自理。
注:请学员带一寸彩照2张(背面注明姓名)、身份证复印件一张。